4th POSTGRADUATE

CLL Conference

Bologna November 13-14 2023

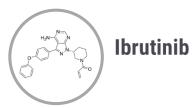
Royal Hotel Carlton

President:

Pier Luigi Zinzani

4th Postgraduate CLL Conference Bologna

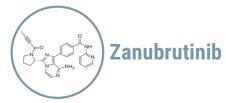
Selecting the appropriate BTKi for frontline treatment


Matthew S. Davids, MD, MMSc

Clinical Research Director | Division of Lymphoma | Dana-Farber Cancer Institute Associate Professor of Medicine | Harvard Medical School 14 November, 2023

Disclosures of Matthew S. Davids, MD, MMSc

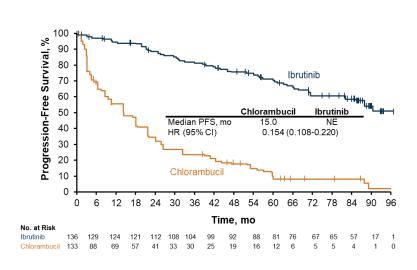
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
AbbVie	✓		✓			✓	
Adaptive Biotechnologies			✓			✓	
Ascentage Pharma	✓		✓				
AstraZeneca	✓		✓			✓	
BeiGene			✓			✓	
Bristol-Myers Squibb			✓			✓	
Eli Lilly			✓			✓	
Genentech	✓		✓			✓	
Genmab			✓				
Janssen			✓			✓	
Merck			✓			✓	
Novartis	✓						
Nuvlaent			✓				
Research to Practice							√ (Honoraria)
Secura Bio	✓		✓				
Takeda			✓			✓	
TG Therapeutics	✓		✓			✓	


BTK inhibitors: currently available options for 1L CLL

- RESONATE-2[a]: superior PFS and OS vs Clb
- iLLUMINATE[b]: superior PFS vs GClb
- ALLIANCE^[c]: superior PFS vs BR in older patients
- FLAIR[d]: superior PFS for IR vs FCR
- ECOG 1912^[e]: superior PFS and OS for IR vs FCR in younger patients

• ELEVATE-TN^[f]: superior PFS and a trend toward better OS with acalabrutinib regimens vs GClb

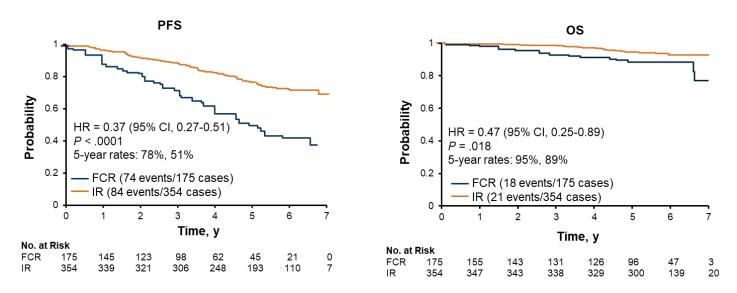
SEQUOIA^[g]: superior PFS vs BR


BR, bendamustine and rituximab; Clb, chlorambucil; IR, ibrutinib and rituximab; PFS, progression-free survival; TN, treatment-naive.
a. Burger JA, et al. Leukemia. 2020;34:787-798; b. Moreno C, et al. Lancet Oncol. 2019;20:43-56; c. Woyach JA, et al. N Engl J Med. 2018;379:2517-2528; d. Hillmen P, et al. Blood. 2021;138:642; e. Shanafelt TD, et al. N Engl J Med. 2019;381:432-443; f. Sharman JP, et al. Lancet. 2020;395:1278-1291; g. Tam CS, et al. Blood. 2021;138:396.

The case for ibrutinib

Older patients: RESONATE-2: 8-Year Follow-Up

- Longest follow-up to date with a single-agent BTK inhibitor from a phase 3 study
- Sustained PFS benefit with ibrutinib versus chlorambucil
- Benefit was similar for mutated and unmutated IGHV



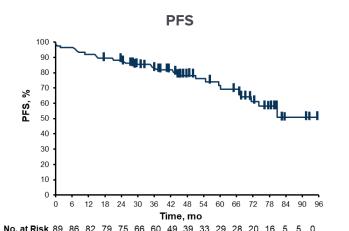
NE, not estimable.

Barr PM, et al. Blood Adv. 2022;6:3440-3450.

Younger patients: ECOG E1912 Update: Median 5.8 Years Follow-Up

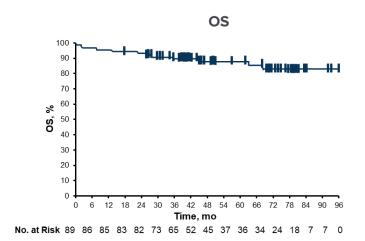
- Longer follow-up continues to show PFS and OS benefits with IR vs FCR
- Superior PFS with IR in both mutated and unmutated IGHV subgroups

Shanafelt TD, et al. Blood. 2022;140:112-120.


High risk patients: del(17p) and/or TP53 mutation

Pooled analysis of 89 patients with del17p and/or TP53 mutation

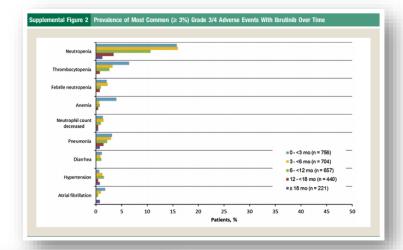
Patients received either:


Single-agent ibrutinib in PCYC-1122 or RESONATE-2 -OR-

Ibrutinib + anti-CD20 in iLLUMINATE or E1912

Median follow-up 49.8 months

- Median PFS not reached
- Estimated 4-y PFS 79%
- Estimated 4-y OS 88%



Allan JN, et al. Br J Haematol. 2022;196:947-953.

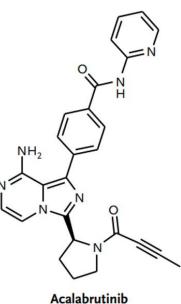
Ibrutinib's toxicity profile is well-established

Safety Analysis of Four Randomized Controlled Studies of Ibrutinib in Patients With Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma or Mantle Cell Lymphoma

Susan O'Brien,¹ Peter Hillmen,² Steven Coutre,³ Paul M. Barr,⁴ Graeme Fraser,⁵ Alessandra Tedeschi,⁶ Jan A. Burger,⁷ Marie-Sarah Dilhuydy,⁸ Georg Hess,⁹ Carol Moreno,¹⁰ Paula Cramer,¹¹ Emily Liu,¹² Stephen Chang,¹² Jessica Vermeulen,¹³ Lori Styles,¹² Angela Howes,¹⁴ Danelle F. James,¹² Kalpesh Patel,¹⁵ Thorsten Graef,¹² Rudolph Valentino¹²

Table 7 Bleeding Events: Cumulative and Exposure-adjusted Incidence Rates								
lbr (n = 756) Comp (n = 749)								
Event	%	EAIR	%	EAIR	Δ, % ^a	Δ, EAIR ^a		
Any bleeding event ^b	38	0.486	17	0.2628	21.3	0.2232		
Grade 3/4 bleeding event	3	0.0252	2	0.0276	0.8	-0.0024		
Major hemorrhage	4	0.0348	3	0.0348	1.3	0		
Grade 3/4 major hemorrhage	3	0.0252	2	0.0276	0.8	-0.0024		

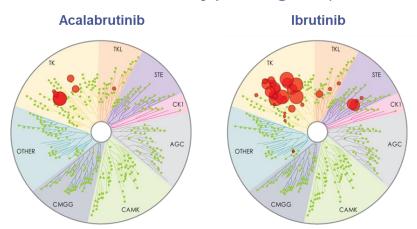
Abbreviations: Comp = comparator; EAIR = exposure-adjusted incidence rate per patient-years; fbr = ibrutinib.
*Negative numbers indicate higher rates with comparator.


^bBased on the number of patients with any bleeding event by preferred term.

US cooperative group studies suggest Gr 3/4 ibrutinib toxicities may be less in younger patients

Adverse event	IR Arm Alliance n=181	IR Arm E1912 N=352
Median Age	71 yrs	57 yrs
Age range	65 – 86	31 - 70
Infection	19%	5%
Atrial fibrillation	6%	3%
Bleeding	4%	1%
Hypertension	34%	7%
Deaths during active treatment +30 days	7%	1%

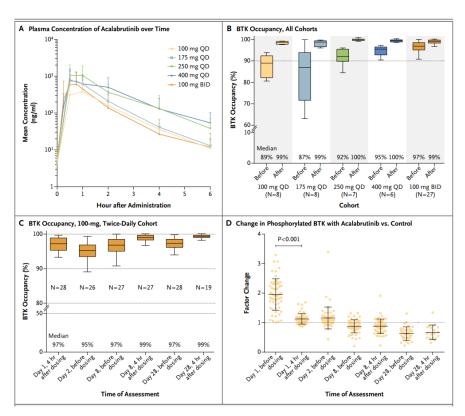
The case for acalabrutinib

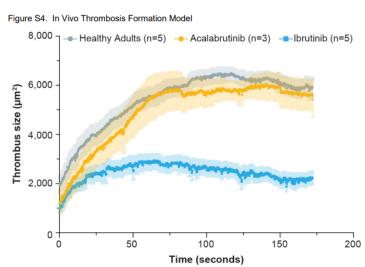


Acalabrutinib

- Highly-selective, potent BTK inhibitor
- Designed to minimize off-target activity, with minimal effects on TEC, EGFR, or ITK signaling

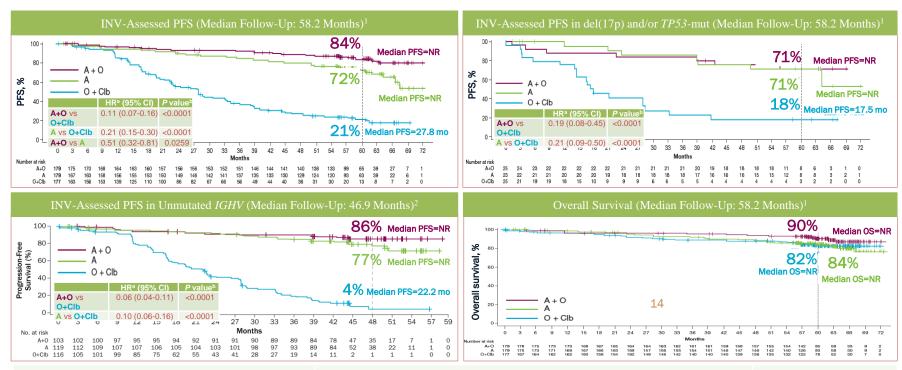
Kinase selectivity profiling at 1 μ M




The size of the red	circle is pro	oportional to the	he dearee of	inhibition
THE SIZE OF THE TEU	circle is pit	υροιτισπαι το τι	ne degree of	IIIIIIDILIOII.

Kinase Inhibition IC ₅₀ (nM)					
Kinase	Acalabrutinib	Ibrutinib			
ВТК	5.1	1.5			
TEC	126	10			
вмх	46	0.8			
TXK	368	2.0			
ERBB2	~1000	6.4			
EGFR	>1000	5.3			
ITK	>1000	4.9			
JAK3	>1000	32			
BLK	>1000	0.1			

Barf T, et al. J Pharmacol Exp Ther. 2017.


Acalabrutinib: Pharmacokinetics and Pharmacodynamics

Platelets from patients treated with ibrutinib 420 mg once per day (QD) (n=5) or acalabrutinib 100 mg twice per day (BID) (n=3) were evaluated for their ability to support thrombus formation in laser injured arterioles of VWF^{HA1} mice. Freshly isolated platelets from healthy volunteers (n=5) were used as non-drug treated controls. A minimum of 4 arterioles per mouse was used to assess thrombus formation for each patient/volunteer sample. Median fluorescence intensity as a function of time is provided in the figure (shading denotes standard error of the median).

5-Year Follow-Up of ELEVATE-TN: Acala ± Obin vs Obin + Chl in TN CLL - PFS and OS^{1,2}

- At a median follow-up of 58.2 months (range, 0.0-72.0), OS data were immature, and medians were not reached in any treatment arm
- Relative risk for death was lower in the A+O vs O+Clb arm (HR=0.55, 95% CI: 0.30-0.99)
- Crossover from O+Clb to A occurred after disease progression in 72 patients (41%)
- All analyses are based on descriptive statistics

^{1.} Sharman JP, et al. ASCO 2022. Abstract 7539. 2. Sharman JP, et al. Leukemia. 2022;36(4):1171-1175.

5-Year Follow-Up of ELEVATE-TN: Acalabrutinib ± Obinutuzumab vs Obinutuzumab + Chlorambucil in TN CLL – Safety^{1,2}

AEs of Clinical Interest, n (%)	A+0 (n=178)		A (n=179)		O+Clb (n=169)	
/ i=0 0. 0 iiiii 0 iii 1 ii 1 ii 1 ii 1 ii 1	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3
Cardiac events	43 (24.2)	17 (9.6)	39 (21.8)	18 (10.1)	13 (7.7)	3 (1.8)
Atrial fibrillation	11 (6.2)	2 (1.1)	13 (7.3)	2 (1.1)	1 (0.6)	0
Bleeding	88 (49.4)	8 (4.5)	78 (43.6)	6 (3.4)	20 (11.8)	0
Major bleeding ^a	12 (6.7)	8 (4.5)	8 (4.5)	6 (3.4)	2 (1.2)	0
Hypertension	17 (9.6)	8 (4.5)	16 (8.9)	7 (3.9)	6 (3.6)	5 (3.0)
Infections	140 (78.7)	50 (28.1)	135 (75.4)	35 (19.6)	75 (44.4)	14 (8.3)
Secondary primary malignancies	31 (17.4)	14 (7.9)	27 (15.1)	7 (3.9)	7 (4.1)	3 (1.8)
Excluding nonmelanoma skin	17 (9.6)	12 (6.7)	13 (7.3)	5 (2.8)	3 (1.8)	2 (1.2)

^a Defined as any serious or grade ≥3 hemorrhagic event, or any grade hemorrhagic event in the central nervous system.

^{1.} Sharman JP, et al. ASCO 2022. Abstract 7539. 2. Sharman JP, et al. EHA 2022. Abstract P666.

Acalabrutinib Tablet Formulation

Acalabrutinib tablets are smaller in size compared with acalabrutinib capsules, and have a film coating to improve swallowing ability¹

- PPI Coadministration: Acalabrutinib tablets can be taken with acid-reducing agents such as PPIs, antacids, or H2-receptor antagonists^{1,2}
- Same Efficacy and Safety Expected: The new tablet formulation has been proven to be bioequivalent to capsules¹
- Same Dosing Schedule: As with acalabrutinib 100 mg capsules, patients take one 100 mg tablet twice daily^{2,3,a}

- Same CYP3A interaction with acalabrutinib tablets and capsules:
 - Strong CYP3A Inhibitors: Avoid co-administration of acalabrutinib with a strong CYP3A inhibitor. If these inhibitors will be used short term, interrupt acalabrutinib. After discontinuation of strong CYP3A inhibitor for at least 24 hours, resume previous dosage of acalabrutinib
 - Moderate CYP3A Inhibitors: Reduce the dosage of acalabrutinib to 100 mg once daily when co-administered with a moderate CYP3A inhibitor
 - Strong CYP3A Inducers: Avoid co-administration of acalabrutinib with a strong CYP3A inducer. If co-administration is unavoidable, increase the dosage of acalabrutinib to 200 mg approximately every 12 hours

^a Approximately every 12 hours.²

^{1.} Sharma S, et al. Blood. 2021;138(Suppl 1):4365. 2. Acalabrutinib tablets. Prescribing information. AstraZeneca Pharmaceuticals LP; 2022. 3. Acalabrutinib capsules. Prescribing information. AstraZeneca Pharmaceuticals LP; 2022.

CLL Conference

Acalabrutinib-based Regimens in Frontline or Relapsed/Refractory Higher-Risk CLL: Pooled Analysis of 5 Clinical Trials

Davids MS, et al.

Pooled Analysis of 5 Acalabrutinib **Clinical Trials**

- Pts with TN or R/R CLL and higher-risk genomic features · Treated with A-based
- regimens

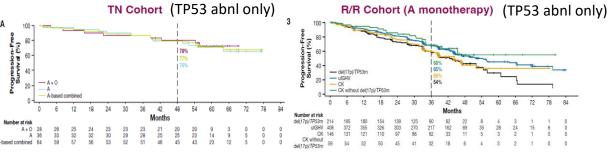
TN CLL (n=320) A±O (efficacy + safety)

CK without

R/R CLL (n=488) A monotherapy (efficacy) A±O (safety)

del(17p)/TP53m

CK without


Median follow-up

High ORR across subgroups

	TN	R/R
del(17p)/ <i>TP53</i> m	91%	86%
uIGHV	96%	87%
СК	91%	84%

PFS and OS benefits observed across higher-risk subgroups in both cohorts

AE incidence was similar to the reported overall safety profile of acalabrutinib

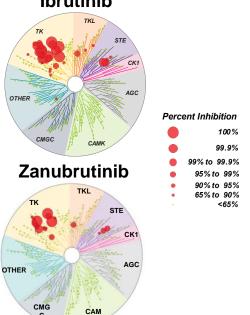
*CK defined as ≥3 chromosomal abnormalities with ≥1 structural abnormality excluding inversion of chromosome 9. A acalabrutinib: AE, adverse event: CK, complex karvotype; CLL, chronic lymphocytic leukemia; mo, months; NR, not reached; O, obinutuzumab; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; R/R, relapsed/refractory; TN, treatment naive; TP53m, tumor protein p53 mutation; uIGHV, unmutated immunoglobulin heavy chain variable region genes.

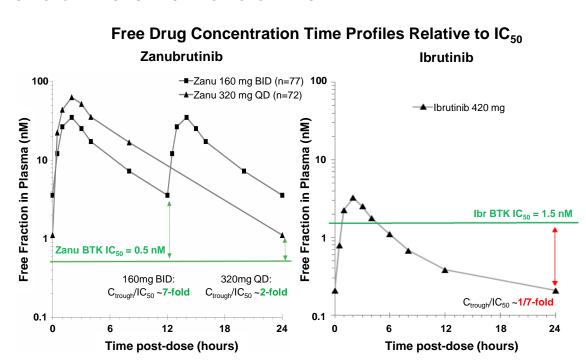
Conclusions

PFS and OS rates are high with A-based regimens in pts with higher-risk CLL

A-based regimens had a consistent tolerability profile

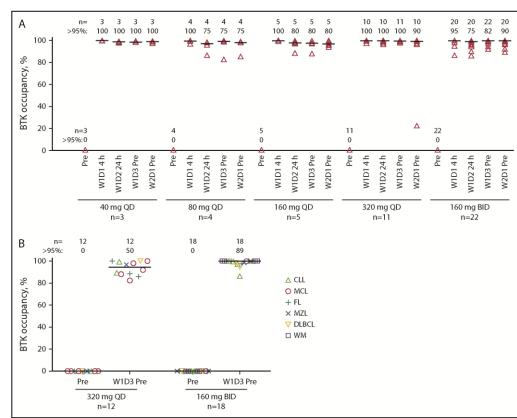
These data demonstrate the long-term benefit of A-based regimens in pts with CLL and higher-risk genomic features, regardless of line of therapy


-- CONFIDENTIAL: DO NOT POST --


The case for zanubrutinib

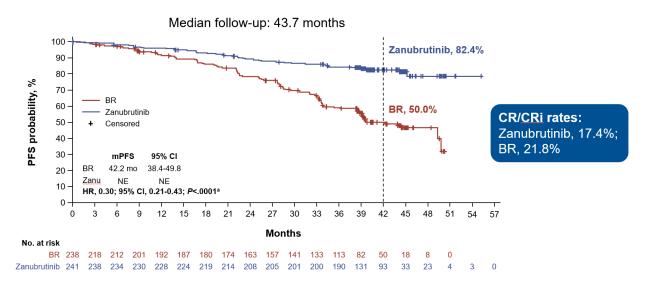
Pharmacokinetics and Selectivity of Zanubrutinib and Ibrutinib

Whole Kinase Panel Selectivity Profiles Ibrutinib


Note: These data are from separate analyses. Limitations of cross-trial comparisons apply.

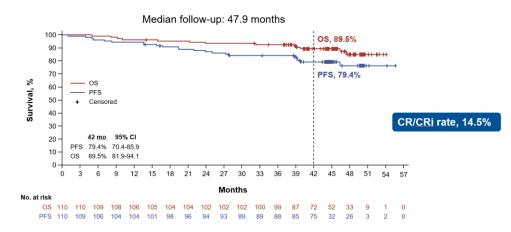
ALPINE study. Hillmen et al. LB1900 EHA 2021.

Zanubrutinib induces sustained BTK occupancy in PBMCs and lymph nodes


Lymph node tissue

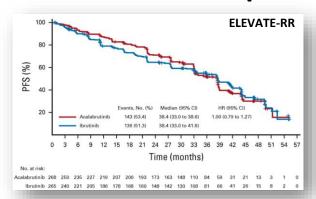
Tam et al., Blood, 2019

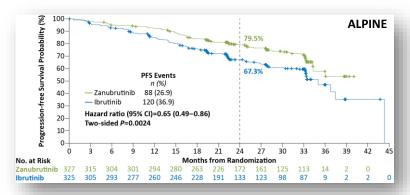
Zanubrutinib: Phase 3 SEQUOIA Study

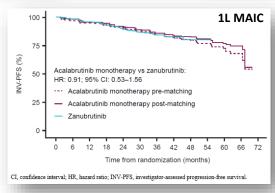

PFS in non-del(17p)

Zanubrutinib in CLL With del(17p)/TP53 Mutation

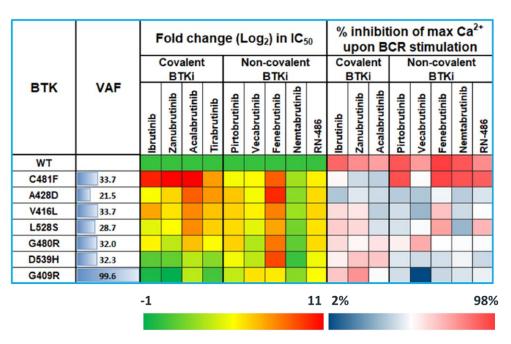
PFS in del(17p)


- SEQUOIA del(17p) cohort, N = 110
- Largest prospective dataset in patients with TN del17p CLL


So how do we choose between these 3 options?


Comparing the covalent BTKi

Byrd JC et al., J Clin Oncol. 2021


Brown JR, et al. N Engl J Med. 2022

(in submission)

-- CONFIDENTIAL: DO NOT POST --

Acquired BTK Mutations Associated With Resistance to Non-Covalent BTK Inhibitors: Response of BTK-Mutant REC-1 Cells to Covalent and Non-Covalent BTK Inhibitors

BTKi Costs

BTK Inhibitor	Dose Strength	Quantity per Bottle	WAC (12-mo supply)	Cost Differential (12-mo supply)
zanubrutinib	80-mg capsules	120 capsules	\$167,964	_
acalabrutinib	100-mg capsules	60 capsules	\$173,832	- \$5,868 (3.5%)
ibrutinib	All tablet strengths	28 tablets ^a	\$192,288	-\$24,324 (14.5%)

^albrutinib converted up to 30-day supply, then annualized at 100% dispensed adherence.

Selecting the appropriate BTKi for frontline treatment

77M with del(11q), U-IGHV CLL and poorly-controlled HTN, cytopenias: acala

53M with tri12, U-IGHV CLL, very fit, busy lifestyle and refractory AIHA: ibrut

75F with del(17p), U-IGHV CLL and migraine headaches with bulky lymphadenopathy: zanu

